4.2 Article

Experimental evaluation of occupancy-based energy-efficient climate control of VAV terminal units

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/23744731.2015.1023162

关键词

-

资金

  1. National Science Foundation [CPS-0931885, ECCS-0925534]

向作者/读者索取更多资源

Results are presented from a nearly week-long experimental evaluation of a scalable control algorithm for a commercial building HVAC system based on real-time measurements of occupancy obtained from motion detectors. The control algorithm decides air flow rate and amount of reheat for each variable air volume terminal box based on real-time measurements of occupancy and space temperature. It is a rule-based controller, so the control computations are simple. The experiments showed that the proposed controller resulted in 37% energy savings over baseline on average without sacrificing indoor climate. In contrast to prior work that reports energy savings without a careful measure of the effect on indoor climate, it is verified that the controller indeed maintains indoor climate as well as the building's baseline controller does. This verification is performed from measurements of a host of environmental variables and analysis of before/after occupant survey results. A complete system required to retrofit existing buildings with the controller is presented, which includes a wireless sensor network and a software execution platform. Two useful observations from this work are: (i) considerable energy savings-along with compliance with ASHRAE ventilation standards-are possible with simple occupancy-based control algorithms that are easy to retrofit; and (ii) these savings are attained with binary occupancy measurements from motion detectors that do not provide occupancy-count measurements. Results also show that there is a large variation in energy savings from zone to zone and from day to day.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据