4.6 Review

Construction of smart inorganic nanoparticle-based ultrasound contrast agents and their biomedical applications

期刊

SCIENCE BULLETIN
卷 60, 期 13, 页码 1170-1183

出版社

ELSEVIER
DOI: 10.1007/s11434-015-0829-5

关键词

Inorganic nanoparticle; Ultrasound imaging; Theranostic; Contrast agent

资金

  1. China National Fund [51225202]
  2. National Natural Science Foundation of China [51402329]
  3. Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures [SKL201404]
  4. Shanghai Excellent Academic Leaders Program [14XD1403800]

向作者/读者索取更多资源

Ultrasound (US) imaging in combination with US contrast agents (UCAs) is a powerful tool in the modern biomedical field because of its high spatial resolution, easy access to patients and minimum invasiveness. The microbubble-based UCAs have been widely used in clinical diagnosis; however, they are only limited to the blood pool imaging and not applicable to the tissue-penetrated imaging due to their large particle size and structural instability. Inorganic nanoparticles (NPs), such as silica, gold and FexOy, featured with both satisfactory echogenic properties and structural stability have the potential to be used as a new generation of UCAs. In this review, we present the most recent progresses in the tailored construction of inorganic UCAs and their biomedical applications in the US imaging-involved fields. Firstly, the typical inorganic NPs with different structures including solid, hollow and multiple-layer forms will be comprehensively introduced in terms of their structure design, physicochemical property, US imaging mechanism and diverse applications; secondly, the recent progress in exploring the gas-generating inorganic NP system for US imaging purpose will be reviewed, and these intelligent UCAs are multifunctional for simultaneous US imaging and disease therapy; thirdly, several nanocomposite platforms newly constructed by combining inorganic UCAs with other functional components will be presented and discussed. These multifunctional NPs are capable of further enhancing the imaging resolution by providing more comprehensive anatomical information simultaneously. Last but not the least, the design criteria for developing promising UCAs to satisfy both clinical demands and optimized US imaging capability will be discussed and summarized in this review.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据