4.7 Article

Twin peaks: Searching for 4-hydroxynonenal urinary metabolites after oral administration in rats

期刊

REDOX BIOLOGY
卷 4, 期 -, 页码 136-148

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.redox.2014.12.016

关键词

4-Hydroxynonenal; Lipoperoxidation; Metabolism; HRMS; Isotope tracking

资金

  1. ITMO Cancer (Plan cancer)/INCa/INSERM
  2. [COST CM 1001]

向作者/读者索取更多资源

4-Hydroxynonenal (HNE) is a cytotoxic and genotoxic lipid oxidation secondary product which is formed endogenously upon peroxidation of cellular n-6 fatty acids. However, it can also be formed in food or during digestion, upon peroxidation of dietary lipids. Several studies have evidenced that we are exposed through food to significant concentrations of HNE that could pose a toxicological concern. It is then of importance to known how HNE is metabolized after oral administration. Although its metabolism has been studied after intravenous administration in order to mimick endogenous formation, its in vivo fate after oral administration had never been studied. In order to identify and quantify urinary HNE metabolites after oral administration in rats, radioactive and stable isotopes of HNE were used and urine was analyzed by radio chromatography (radio-HPLC) and chromatography coupled with High Resolution Mass Spectrometry (HPLC-HRMS). Radioactivity distribution revealed that 48% of the administered radioactivity was excreted into urine and 15% into feces after 24 h, while 3% were measured in intestinal contents and 2% in major organs, mostly in the liver. Urinary radio-HPLC profiles revealed 22 major peaks accounting for 88% of the urinary radioactivity. For identification purpose, HNE and its stable isotope I [1,2-C-13]-HNE were given at equimolar dose to be able to univocally identify HNE metabolites by tracking twin peaks on HPLC-HRMS spectra. The major peak was identified as 9-hydroxy-nonenoic acid (27% of the urinary radioactivity) Followed by classical HNE mercapturic acid derivatives (the mercapturic acid conjugate of di-hydroxynonane (DHN-MA), the mercapturic acid conjugate of 4-hydroxynonenoic acid (DNA-MA) in its opened and lactone form) and by metabolites that are oxidized in the terminal position. New urinary metabolites as thiomethyl and glucuronide conjugates were also evidenced. Some analyses were also performed on feces and gastro-intestinal contents, revealing the presence of tritiated water that could originate from beta-oxidation reactions. (C) 2014 The Authors. Published by Elsevier By. This is an open access article under the CC BY-NC-ND license

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据