4.6 Article

Lyso-globotriaosylceramide downregulates KCa3.1 channel expression to inhibit collagen synthesis in fibroblasts

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2015.11.050

关键词

Lyso-globotriaosylceramide; KCa3.1 channel; Fibroblast; Calcium; Collagen

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2013R1A1A1076119]
  2. Ewha Womans University
  3. National Research Foundation of Korea [2013R1A1A1076119] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Fabry disease is an X-linked lysosomal storage disorder that is caused by a deficiency of a-galactosidase A. The disease ultimately manifests as multiple organ dysfunctions owing to excessive accumulation of globotriaosylceramide (Gb3). Among the several complications of Fabry disease, ascending thoracic aortic aneurysm is relatively common, which is classically associated with connective tissue disorders characterized by abnormal defects or deficiencies in structural proteins such as collagen and elastin. Although an elevated Gb3 level is regarded as a prerequisite for the manifestations of Fabry disease, only this excess accumulation cannot explain the pathophysiology of these complications. Recently, an increased plasma level of Iyso-Gb3 was suggested as a new biomarker in Fabry disease. Therefore, the aim of this study was to assess the effects of Iyso-Gb3 on the pathogenesis of thoracic ascending aortic aneurysms in Fabry disease, with a particular focus on the responses related to aortic remodeling by fibroblasts. We found that Iyso-Gb3 inhibited the growth of fibroblasts, as well as their differentiation into myofibroblasts, and collagen expression. Moreover, all of these compromised responses could be attributed to the effects of Iyso-Gb3 on downregulation of KCa3.1 channel expression, and these impairments could be rescued when activating the KCa3.1 channel or increasing intracellular Ca2+ concentration. This study provides new evidence that Iyso-Gb3 inhibits the differentiation into myofibroblasts and collagen synthesis of fibroblasts owing to decreased Ca2+ levels by KCa3.1 channel dysfunction. These findings suggest that the KCa3.1 channel can serve as a new target to attenuate and prevent development of ascending thoracic aortic aneurysm in Fabry disease. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据