4.7 Article

Saccharomyces cerevisiae in directed evolution An efficient tool to improve enzymes

期刊

BIOENGINEERED
卷 3, 期 3, 页码 172-177

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/bbug.19544

关键词

Directed evolution; Saccharomyces cerevisiae; DNA recombination; random mutagenesis; IvAM; IVOE

向作者/读者索取更多资源

Over the past 20 years, directed evolution has been seen to be the most reliable approach to protein engineering. Emulating the natural selection algorithm, ad hoc enzymes with novel features can be tailor-made for practical purposes through iterative rounds of random mutagenesis, DNA recombination and screening. Of the heterologous hosts used in laboratory evolution experiments, the budding yeast Saccharomyces cerevisiae has become the best choice to express eukaryotic proteins with improved properties. S. cerevisiae not only allows mutant enzymes to be secreted but also, it permits a wide range of genetic manipulations to be employed, ranging from in vivo cloning to the creation of greater molecular diversity, thanks to its efficient DNA recombination apparatus. Here, we summarize some successful examples of the use of the S. cerevisiae machinery to accelerate artificial evolution, complementing the traditional in vitro methods to generate tailor-made enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据