4.5 Article

Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata

期刊

AMB EXPRESS
卷 4, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s13568-014-0044-9

关键词

Polyester hydrolase; Synthetic polyester; Polyethylene terephthalate (PET); Thermomonospora curvata

资金

  1. Deutsche Bundesstiftung Umwelt [AZ 13267, AZ 2012/202]

向作者/读者索取更多资源

Thermomonospora curvata is a thermophilic actinomycete phylogenetically related to Thermobifida fusca that produces extracellular hydrolases capable of degrading synthetic polyesters. Analysis of the genome of T. curvata DSM43183 revealed two genes coding for putative polyester hydrolases Tcur1278 and Tcur0390 sharing 61% sequence identity with the T. fusca enzymes. Mature proteins of Tcur1278 and Tcur0390 were cloned and expressed in Escherichia coli TOP10. Tcur1278 and Tcur0390 exhibited an optimal reaction temperature against p-nitrophenyl butyrate at 60 degrees C and 55 degrees C, respectively. The optimal pH for both enzymes was determined at pH 8.5. Tcur1278 retained more than 80% and Tcur0390 less than 10% of their initial activity following incubation for 60 min at 55 degrees C. Tcur0390 showed a higher hydrolytic activity against poly(e-caprolactone) and polyethylene terephthalate ( PET) nanoparticles compared to Tcur1278 at reaction temperatures up to 50 degrees C. At 55 degrees C and 60 degrees C, hydrolytic activity against PET nanoparticles was only detected with Tcur1278. In silico modeling of the polyester hydrolases and docking with a model substrate composed of two repeating units of PET revealed the typical fold of alpha/beta serine hydrolases with an exposed catalytic triad. Molecular dynamics simulations confirmed the superior thermal stability of Tcur1278 considered as the main reason for its higher hydrolytic activity on PET.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据