4.7 Article

Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core

期刊

OPTICA
卷 2, 期 4, 页码 339-342

出版社

OPTICAL SOC AMER
DOI: 10.1364/OPTICA.2.000339

关键词

-

类别

向作者/读者索取更多资源

Ultrafast lasers with high repetition rates are of considerable interest in applications such as optical fiber telecommunications, frequency metrology, high-speed optical sampling, and arbitrary waveform generation. For fiber lasers mode-locked at the cavity round-trip frequency, the pulse repetition rate is limited to tens or hundreds of megahertz by the meter-order cavity lengths. Here we report a soliton fiber laser passively mode-locked at a high harmonic (similar to 2 GHz) of its fundamental frequency by means of optoacoustic interactions in the small solid glass core of a short length ( 60 cm) of photonic crystal fiber. Due to tight confinement of both light and vibrations, the optomechanical interaction is strongly enhanced. The long-lived acoustic vibration provides strong modulation of the refractive index in the photonic crystal fiber core, fixing the soliton spacing in the laser cavity and allowing stable mode-locking, with low pulse timing jitter, at gigahertz repetition rates. (C) 2015 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据