4.8 Article

Reversible Mechanochromic Delayed Fluorescence in 2D Metal-Organic Micro/Nanosheets: Switching Singlet-Triplet States through Transformation between Exciplex and Excimer

期刊

ADVANCED SCIENCE
卷 5, 期 11, 页码 -

出版社

WILEY
DOI: 10.1002/advs.201801187

关键词

excimers; exciplexes; mechanochromic delayed fluorescence; metal-organic microsheets; singlet-triplet states

资金

  1. 973 Program [2014CB932103]
  2. National Natural Science Foundation of China [21301016, 21473013, 21541010, 21771021]
  3. Beijing Municipal Natural Science Foundation [2152016, 2182028]
  4. Fundamental Research Funds for the Central Universities
  5. Analytical and Measurements Fund of Beijing Normal University

向作者/读者索取更多资源

Mechanochromic luminescent materials have attracted much attention and present a variety of applications in information security, data recording, and storage devices. However, most of these smart luminescent systems are based on typical fluorescence and/or phosphorescence mechanisms; the mechanochromic delayed fluorescence (MCDF) materials involving switching singlet and triplet states are rarely studied to date. Herein, new 2D layered metal-organic micro/nanosheets, [Cd(9-AC)(2)(BIM)(2)] (named as MCDF-1; 9-AC = anthracene-9-carboxylate and BIM = benzimidazole) and its solvate form containing interlayer CH3CN (named as MCDF-2), which exhibit reversible mechanochromic delayed fluorescence characteristics, are presented. With applying the mechanical force, the luminescent center of MCDF-1 can be converted from 9-AC/BIM exciplex to 9-AC/9-AC excimer, resulting in alternations of delayed fluorescence. Such luminescent change can be further recovered by CH3CN fumigation, accompanied by the structural transformation from MCDF-1 to MCDF-2. Furthermore, the force-responsive process also refers to the energy redistribution between singlet and triplet states as inferred by both temperature-dependent photophysics and theoretical calculations. Therefore, this work not only develops new 2D micro/nanosheets as MCDF materials, but also supplies a singlet-triplet energy switching mechanism on their reversible mechanochromic process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据