4.7 Article

Shielding of Lipid Nanoparticles for siRNA Delivery: Impact on Physicochemical Properties, Cytokine Induction, and Efficacy

期刊

MOLECULAR THERAPY-NUCLEIC ACIDS
卷 3, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/mtna.2014.61

关键词

delivery; immune response; nanomedicine; nanoparticles; polyethylene glycol; RNAi

向作者/读者索取更多资源

Formulation of short interfering RNA (siRNA) into multicomponent lipid nanoparticles (LNP) is an effective strategy for hepatic delivery and therapeutic gene silencing. This study systematically evaluated the effect of polyethylene glycol ( PEG) density on LNP physicochemical properties, innate immune response stimulation, and in vivo efficacy. Increased PEG density not only shielded LNP surface charge but also reduced hemolytic activity, suggesting the formation of a steric barrier. In addition, increasing the PEG density reduced LNP immunostimulatory potential as reflected in cytokine induction both in vivo and in vitro. Higher PEG density also hindered in vivo efficacy, presumably due to reduced association with apolipoprotein E ( ApoE), a protein which serves as an endogenous targeting ligand to hepatocytes. This effect could be overcome by incorporating an exogenous targeting ligand into the highly shielded LNPs, thereby circumventing the requirement for ApoE association. Therefore, these studies provide useful information for the rational design of LNP-based siRNA delivery systems with an optimal safety and efficacy profile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据