4.4 Article

A Guide to In vivo Single-unit Recording from Optogenetically Identified Cortical Inhibitory Interneurons

期刊

出版社

JOURNAL OF VISUALIZED EXPERIMENTS
DOI: 10.3791/51757

关键词

Neuroscience; Issue 93; Optogenetics; Channelrhodopsin; ChR2; cortex; in vivo recording; extracellular; Parvalbumin; interneuron; mouse; electrophysiology

资金

  1. Whitehall Foundation
  2. NIH

向作者/读者索取更多资源

A major challenge in neurophysiology has been to characterize the response properties and function of the numerous inhibitory cell types in the cerebral cortex. We here share our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex using a method developed by Lima and colleagues1. Recordings are performed in mice expressing Channelrhodopsin-2 (ChR2) in specific neuronal subpopulations. Members of the population are identified by their response to a brief flash of blue light. This technique - termed PINP, or Photostimulation-assisted Identification of Neuronal Populations - can be implemented with standard extracellular recording equipment. It can serve as an inexpensive and accessible alternative to calcium imaging or visually-guided patching, for the purpose of targeting extracellular recordings to genetically-identified cells. Here we provide a set of guidelines for optimizing the method in everyday practice. We refined our strategy specifically for targeting parvalbumin-positive (PV+) cells, but have found that it works for other interneuron types as well, such as somatostatin-expressing (SOM+) and calretinin-expressing (CR+) interneurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据