4.3 Article

Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles

出版社

SPRINGER
DOI: 10.1186/s40201-014-0115-5

关键词

Bimetallic; Chromium; Activated carbon; nZVI; Adsorption

资金

  1. Tehran University of Medical Sciences
  2. Iranian Nano Technology Initiative Council

向作者/读者索取更多资源

Recently, adsorption process has been introduced as a favorable and effective technique for the removal of metal ions from aqueous solutions. In the present study, bimetallic nanoparticles consisting of zero valent iron and silver were loaded on the activated carbon powder for the preparation of a new adsorbent (PAC-Fe-o/Ag). The above adsorbent was characterized by using XRD, SEM and TEM techniqes. Experimental data were exploited for kinetic, equilibrium and thermodynamic evaluations related to the adsorption processes. The Cr(VI) adsorption process was found to be favorable at pH 3 and it reached equilibrium state within 60 min. The stirring rate did not have a significant effect on the adsorption efficiency. Furthermore, the monolayer adsorption capacity of Cr(VI) based on the Langmuir model was measured to be 100 mg/g. The experimental equilibrium data were fitted to the Freundlich adsorption and pseudo second-order models. According to the thermodynamic study, the adsorption process was spontaneous and endothermic in nature, indicating the adsorption capacity increases with increasing the temperature. The results also revealed that the synthesized composite can be potentially applied as a magnetic adsorbent to remove Cr(VI) contaminants from aqueous solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据