4.6 Article

Identification of Carbohydrate Metabolism Genes in the Metagenome of a Marine Biofilm Community Shown to Be Dominated by Gammaproteobacteria and Bacteroidetes

期刊

GENES
卷 1, 期 3, 页码 371-384

出版社

MDPI AG
DOI: 10.3390/genes1030371

关键词

454 pyrosequencing; next generation sequencing; marine polysaccharide degradation; glycoside hydrolases; metagenomics; marine bacteria; cellulose biofilm

资金

  1. Natural Environment Research Council (NERC)
  2. NERC

向作者/读者索取更多资源

Polysaccharides are an important source of organic carbon in the marine environment and degradation of the insoluble and globally abundant cellulose is a major component of the marine carbon cycle. Although a number of species of cultured bacteria are known to degrade crystalline cellulose, little is known of the polysaccharide hydrolases expressed by cellulose-degrading microbial communities, particularly in the marine environment. Next generation 454 Pyrosequencing was applied to analyze the microbial community that colonizes and degrades insoluble polysaccharides in situ in the Irish Sea. The bioinformatics tool MG-RAST was used to examine the randomly sampled data for taxonomic markers and functional genes, and showed that the community was dominated by members of the Gammaproteobacteria and Bacteroidetes. Furthermore, the identification of 211 gene sequences matched to a custom-made database comprising the members of nine glycoside hydrolase families revealed an extensive repertoire of functional genes predicted to be involved in cellulose utilization. This demonstrates that the use of an in situ cellulose baiting method yielded a marine microbial metagenome considerably enriched in functional genes involved in polysaccharide degradation. The research reported here is the first designed to specifically address the bacterial communities that colonize and degrade cellulose in the marine environment and to evaluate the glycoside hydrolase (cellulase and chitinase) gene repertoire of that community, in the absence of the biases associated with PCR-based molecular techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据