4.7 Review

On the pro-metastatic stress response to cancer therapies: evidence for a positive co-operation betweenTIMP-1, HIF-1α, and nniR-210

期刊

FRONTIERS IN PHARMACOLOGY
卷 3, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphar.2012.00134

关键词

HIF-1a; microenvironment; microRNA; miR-210; MMP; pro-metastatic,TIMP-1; Met

资金

  1. European Union Research Framework Programme 7 [HEALTH-2007-201279/Microenvimet]
  2. Association pour la Recherche sur le Cancer

向作者/读者索取更多资源

In contrast to expectations in the past that tumor starvation or unselective inhibition of proteolytic activity would cure cancer, there is accumulating evidence that microenvironmental stress, such as hypoxia or broad-spectrum inhibition of metalloproteinases can promote metastasis. In fact, malignant tumor cells, due to their genetic and epigenetic instability, are predisposed to react to stress by adaptation and, if the stress persists, by escape and formation of metastasis. Recent recognition of the concepts of dynamic evolution as well as population and systems biology is extremely helpful to understand the disappointments of clinical trials with new drugs and may lead to paradigm-shifts in therapy strategies. This must be complemented by an increased understanding of molecular mechanism involved in stress response. Here, we review new roles of Hypoxia-inducible factor-1 (HIF-1), one transcription factor regulating stress response-related gene expression: HIF-1 is crucial for invasion and metastasis, independent from its pro-survival function. In addition, HIF-1 mediates pro-metastatic microenvironmental changes of the proteolytic balance as triggered by high systemic levels of tissue inhibitor of metalloproteinases-1 (TIMP-1), typical for many aggressive cancers, and regulates the metabolic switch to glycolysis, notably via activation of the microRNA miR-210. There is preliminary evidence thatTIMP-1 also induces miR-210. Such positive-regulatory co-operation of HIF-1 alpha, miR-210, and TIMP-1, all described to correlate with bad prognosis of cancer patients, opens new perspectives of gaining insight into molecular mechanisms of metastasis-inducing evasion of tumor cells from stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据