4.5 Article

Genome-wide assessment of post-transcriptional control in the fly brain

期刊

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnmol.2013.00049

关键词

post-transcriptional regulation; RNA-sequencing; polyA tail; Drosophila melanogaster; brain; miRNA

资金

  1. Israel Science Foundation [1015/10]
  2. European Research Council [260911]
  3. Marie Curie Reintegration Grant Program
  4. German Israeli Foundation (GIF) Young Investigator Award
  5. Human Frontiers Science Program Career Development Award (CDA) [10/2009]
  6. NATIONAL CENTER FOR ADVANCING TRANSLATIONAL SCIENCES [UL1TR000161] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Post-transcriptional control of gene expression has central importance during development and adulthood and in physiology in general. However, little is known about the extent of post-transcriptional control of gene expression in the brain. Most post-transcriptional regulatory effectors (e.g., miRNAs) destabilize target mRNAs by shortening their polyA tails. Hence, the fraction of a given mRNA that it is fully polyadenylated should correlate with its stability and serves as a good measure of post-transcriptional control. Here, we compared RNA-seq datasets from fly brains that were generated either from total (rRNA-depleted) or polyA-selected RNA. By doing this comparison we were able to compute a coefficient that measures the extent of post-transcriptional control for each brain-expressed mRNA. In agreement with current knowledge, we found that mRNAs encoding ribosomal proteins, metabolic enzymes, and housekeeping genes are among the transcripts with least post-transcriptional control, whereas mRNAs that are known to be highly unstable, like circadian mRNAs and mRNAs expressing synaptic proteins and proteins with neuronal functions, are under strong post-transcriptional control. Surprisingly, the latter group included many specific groups of genes relevant to brain function and behavior. In order to determine the importance of miRNAs in this regulation, we profiled miRNAs from fly brains using oligonucleotide microarrays. Surprisingly, we did not find a strong correlation between the expression levels of miRNAs in the brain and the stability of their target mRNAs; however, genes identified as highly regulated post-transcriptionally were strongly enriched for miRNA targets. This demonstrates a central role of miRNAs for modulating the levels and turnover of brain-specific mRNAs in the fly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据