4.2 Article

Feasibility of acoustic monitoring of strength drop precursory to earthquake occurrence

期刊

EARTH PLANETS AND SPACE
卷 66, 期 -, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1186/1880-5981-66-41

关键词

Fault strength; Earthquake cycle; Rate- and state-dependent friction; Precursor; Linear slip model; Acoustic monitoring; Reflection survey

资金

  1. MEXT KAKENHI [21107007]
  2. MEXT

向作者/读者索取更多资源

Rate- and state-dependent friction law (RSF), proposed on the basis of laboratory experiments, has been extensively applied to modeling of earthquake stick-slip cycles. A simple spring-slider model obeying RSF predicts a significant decrease of the frictional strength Phi (the state of contact) that is localized within a few years preceding the earthquake occurrence. On the other hand, recent laboratory experiments successfully monitored the history of the strength by simultaneously measuring the P-wave transmissivity |T| across the frictional interface using a 1-MHz transducer. This suggests a possibility of earthquake forecast by monitoring the strength of a natural fault by acoustic methods. The present paper explores the feasibility of such monitoring in the field on the basis of the physics of RSF combined with the linear slip model (LSM) employed in the classical acoustic methodology for monitoring an imperfectly welded interface. The characteristic frequency f (c) , around which |T| (or reflectivity |R|) has a good sensitivity to the interface strength, is shown to be proportional to the strength and inversely proportional to the representative scale of real contacts. For natural faults, f(c) is estimated to be 1 to 100 Hz, which is practicable in the field. The changes of |T| and |R| depend on the ratio of the strength drop to the absolute strength level, the latter of which is not constrained by RSF simulations. Expected changes in wave amplitude in the preslip period would be several percent for strong faults and several tens percent for weak faults, which may be detectable by acoustic methods such as seismic reflection surveys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据