4.5 Article

The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging

期刊

BIOLOGY OF SEX DIFFERENCES
卷 5, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/2042-6410-5-8

关键词

Brain sexual differentiation; Epigenetic modifications; DNA methylation; Testosterone; Organizational effects

资金

  1. Training Program in the Laboratory of Neuroendocrinology [HD007228]
  2. UCLA Brain Research Institute
  3. NIH [MH075046, GM095656-01A1, MH068482, MH047538, NS043196]

向作者/读者索取更多资源

Background: The biological basis for sex differences in brain function and disease susceptibility is poorly understood. Examining the role of gonadal hormones in brain sexual differentiation may provide important information about sex differences in neural health and development. Permanent masculinization of brain structure, function, and disease is induced by testosterone prenatally in males, but the possible mediation of these effects by long-term changes in the epigenome is poorly understood. Methods: We investigated the organizational effects of testosterone on the DNA methylome and transcriptome in two sexually dimorphic forebrain regions-the bed nucleus of the stria terminalis/preoptic area and the striatum. To study the contribution of testosterone to both the establishment and persistence of sex differences in DNA methylation, we performed genome-wide surveys in male, female, and female mice given testosterone on the day of birth. Methylation was assessed during the perinatal window for testosterone's organizational effects and in adulthood. Results: The short-term effect of testosterone exposure was relatively modest. However, in adult animals the number of genes whose methylation was altered had increased by 20-fold. Furthermore, we found that in adulthood, methylation at a substantial number of sexually dimorphic CpG sites was masculinized in response to neonatal testosterone exposure. Consistent with this, testosterone's effect on gene expression in the striatum was more apparent in adulthood. Conclusion: Taken together, our data imply that the organizational effects of testosterone on the brain methylome and transcriptome are dramatic and late-emerging. Our findings offer important insights into the long-term molecular effects of early-life hormonal exposure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据