4.5 Article

Decoupling the Effects of Self-Assembled Monolayers on Gold, Silver, and Copper Organic Transistor Contacts

期刊

ADVANCED MATERIALS INTERFACES
卷 2, 期 2, 页码 -

出版社

WILEY
DOI: 10.1002/admi.201400384

关键词

-

资金

  1. Ecole Polytechnique Postdoctoral Research Grant
  2. U.S. Department of Energy (DOE), the Office of Science, the Office of Basic Energy Sciences [DE-SC0001085]
  3. National Science Foundation [DMR-1035257]
  4. National Research Foundation (NRF) of Korea - Korean Government (MSIP) [NRF-2014R1A2A2A01005255]
  5. Directorate For Engineering [1255494] Funding Source: National Science Foundation
  6. Div Of Civil, Mechanical, & Manufact Inn [1255494] Funding Source: National Science Foundation

向作者/读者索取更多资源

In bottom-contact organic field-effect transistors (OFETs), the functionalization of source/drain electrodes leads to a tailored surface chemistry for film growth and controlled interface energetics for charge injection. This report describes a comprehensive investigation into separating and correlating the energetic and morphological effects of a self-assembled monolayers (SAMs) treatment on Au, Ag, and Cu electrodes. Fluorinated 5,11-bis(triethylsilylethynyl) anthradithiophene (diF-TES-ADT) and pentafluorobenzenethiol (PFBT) are employed as a soluble small-molecule semiconductor and a SAM material, respectively. Upon SAM modification, the Cu electrode devices benefit from a particularly dramatic performance improvement, closely approaching the performance of OFETs with PFBT-Au and PFBT-Ag. Ultraviolet photoemission spectroscopy, polarized optical microscopy, grazing-incidence wide-angle X-ray scattering elucidate the metal work function change and templated crystal growth with high crystallinity resulting from SAMs. The transmission-line method separates the channel and contact properties from the measured OFET current-voltage data, which conclusively describes the impact of the SAMs on charge injection and transport behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据