4.5 Article

Simulation-Experimental Approach to Investigate the Role of Interfaces in Self-Replenishing Composite Coatings

期刊

ADVANCED MATERIALS INTERFACES
卷 1, 期 3, 页码 -

出版社

WILEY
DOI: 10.1002/admi.201400053

关键词

-

资金

  1. Dutch Ministry of Economic Affairs, Agriculture and Innovation [SHM08710]

向作者/读者索取更多资源

To investigate self-replenishing on surface-structured composite coatings a dual simulation-experimental approach is employed to study the decisive role of polymer-air and polymer-particle interfaces. Experimentally, the composite system consists of a cross-linked polymer network with fluorinated-dangling chains, embedding colloidal SiO2 nanoparticles which are incorporated in the network via covalent bonding. These particles provide the desired surface structure at the air-interface before and after damage. Any damage replicates the rough surface, while the polymer layer on top of the particles serves as source of low surface energy groups which are able to reorient towards the new air-interfaces. Using coarse-grained simulations details of these self-replenishing composite systems are revealed such as the minimum thickness of the polymer layer necessary for providing optimal self-replenishing ability and the distribution profile of the dangling chains at the various interfaces. The principles and dual approach reported here may be applied to other self-healing composite systems with applications in self-cleaning, anti-fouling or low adhesion materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据