4.5 Article

Graphoepitaxial Directed Self-Assembly of Polystyrene-Block-Polydimethylsiloxane Block Copolymer on Substrates Functionalized with Hexamethyldisilazane to Fabricate Nanoscale Silicon Patterns

期刊

ADVANCED MATERIALS INTERFACES
卷 1, 期 3, 页码 -

出版社

WILEY-BLACKWELL
DOI: 10.1002/admi.201300102

关键词

-

资金

  1. EU FP7 NMP project
  2. LAMAND project [245565]
  3. Science Foundation Ireland [09/IN.1/602]
  4. SFI through the CRANN CSET

向作者/读者索取更多资源

In block copolymer (BCP) nanolithography, microphase separated polystyrene-block -polydimethylsiloxane (PS-b-PDMS) thin films are particularly attractive as they can form small features and the two blocks can be readily differentiated during pattern transfer. However, PS-b-PDMS is challenging because the chemical differences in the blocks can result in poor surface-wetting, poor pattern orientation control and structural instabilities. Usually the interfacial energies at substrate surface are engineered with the use of a hydroxyl-terminated polydimethylsiloxane (PDMS-OH) homopolymer brush. Herein, we report a facile, rapid and tuneable molecular functionalization approach using hexamethyldisilazane (HMDS). The work is applied to both planar and topographically patterned substrates and investigation of graphoepitaxial methods for directed self-assembly and long-range translational alignment of BCP domains is reported. The hexagonally arranged in-plane and out-of-plane PDMS cylinders structures formed by microphase separation were successfully used as on-chip etch masks for pattern transfer to the underlying silicon substrate. The molecular approach developed here affords significant advantages when compared to the more usual PDMS-OH brushes used.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据