4.2 Article

Ten years of probabilistic estimates of biocrystal solvent content: new insights via nonparametric kernel density estimate

期刊

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S1399004714005550

关键词

-

资金

  1. European Union under a FP7 Marie Curie People Action [PIIF-GA-2011-300025]

向作者/读者索取更多资源

The probabilistic estimate of the solvent content (Matthews probability) was first introduced in 2003. Given that the Matthews probability is based on prior information, revisiting the empirical foundation of this widely used solvent-content estimate is appropriate. The parameter set for the original Matthews probability distribution function employed in MATTPROB has been updated after ten years of rapid PDB growth. A new nonparametric kernel density estimator has been implemented to calculate the Matthews probabilities directly from empirical solvent-content data, thus avoiding the need to revise the multiple parameters of the original binned empirical fit function. The influence and dependency of other possible parameters determining the solvent content of protein crystals have been examined. Detailed analysis showed that resolution is the primary and dominating model parameter correlated with solvent content. Modifications of protein specific density for low molecular weight have no practical effect, and there is no correlation with oligomerization state. A weak, and in practice irrelevant, dependency on symmetry and molecular weight is present, but cannot be satisfactorily explained by simple linear or categorical models. The Bayesian argument that the observed resolution represents only a lower limit for the true diffraction potential of the crystal is maintained. The new kernel density estimator is implemented as the primary option in the MATTPROB web application at http://www.ruppweb.org/mattprob/.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据