3.9 Article

The molecular basis of human congenital limb malformations

出版社

WILEY-BLACKWELL
DOI: 10.1002/wdev.59

关键词

-

向作者/读者索取更多资源

This review focuses predominantly on the human congenital malformations caused by alterations affecting the morphoregulatory gene networks that control early limb bud patterning and outgrowth. Limb defects are among the most frequent congenital malformations in humans that are caused by genetic mutations or teratogenic effects resulting either in abnormal, loss of, or additional skeletal elements. Spontaneous and engineered mouse models have been used to identify and study the molecular alterations and disrupted gene networks that underlie human congenital limb malformations. More recently, mouse genetics has begun to reveal the alterations that affect the often-large cis-regulatory landscapes that control gene expression in limb buds and cause devastating effects on limb bud development. These findings have paved the way to identifying mutations in cis-regulatory regions as causal to an increasing number of congenital limb malformations in humans. In these cases, no mutations in the coding region of a presumed candidate were previously detected. This review highlights how the current understanding of the molecular gene networks and interactions that control mouse limb bud development provides insight into the etiology of human congenital limb malformations. (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据