4.7 Article

Dispersion and distribution of bimetallic oxides in SBA-15, and their enhanced activity for reverse water gas shift reaction

期刊

INORGANIC CHEMISTRY FRONTIERS
卷 2, 期 8, 页码 741-748

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5qi00062a

关键词

-

向作者/读者索取更多资源

We used the direct hydrothermal synthesis method to obtain various well-dispersed bimetallic oxides/SBA-15 for the first time. It is possible that well-dispersed relatively large bimetallic sulfates are formed during the hydrothermal synthesis process and then re-dispersed with difficulty during the heat treatment process resulting in the formation of well-dispersed oxide particles in SBA-15. TEM elemental maps of CuO-NiO/SBA-15 clearly illustrated that CuO and NiO particles were monodispersed in SBA-15. TEM-EDX line analysis revealed that NiO particles were well distributed on the SBA-15 surface, and then covered by CuO particles. TEM elemental maps of CuO-CeO2/SBA-15 clearly showed that CuO and CeO2 particles aggregated slightly in SBA-15. TEM-EDX line analysis showed that CeO2 particles were well distributed on the SBA-15 surface, and then covered by CuO particles. TEM elemental maps of NiO-CeO2/SBA-15 clearly illustrated that NiO and CeO2 particles aggregated slightly in SBA-15. TEM-EDX line analysis revealed that NiO particles were largely mixed with CeO2 on the SBA-15 surface. Therefore, TEM elemental maps can be used to study the dispersion of bimetallic oxides, and TEM-EDX line analysis is very effective for investigating their distribution in SBA-15. Compared with monometallic oxides/SBA-15, the obtained bimetallic oxides/SBA-15 catalysts exhibited excellent efficiency as regards reducing CO2 to CO by the reverse water-gas shift (RWGS) reaction. In particular, the bimetallic oxides/SBA-15 catalysts could result in the high CO2 conversion to CO at low temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据