4.2 Article

Barrier-to-Autointegration Factor influences specific histone modifications

期刊

NUCLEUS
卷 2, 期 6, 页码 580-590

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/nucl.2.6.17960

关键词

nuclear envelope; Barrier-to-Autointegration Factor; Lamina-Associated Domain; H3-K9 dimethylation; H3-S10 phosphorylation; nucleosome; G9a; SET/I2PP2A; cell cycle; DNA replication; Hutchinson-Gilford Progeria Syndrome; nucleoskeleton

资金

  1. American Heart Association [0615601U]
  2. National Institutes of Health [RO1 GM48646]

向作者/读者索取更多资源

Defects in the nuclear envelope or nuclear 'lamina' networks cause disease and can perturb histone posttranslational (epigenetic) regulation. Barrier-to-Autointegration Factor (BAF) is an essential but enigmatic lamina component that binds lamins, LEM-domain proteins, DNA and histone H3 directly. We report that BAF copurified with nuclease-digested mononucleosomes and associated with modified histones in vivo. BAF overexpression significantly reduced global histone H3 acetylation by 18%. In cells that stably overexpressed BAF 3-fold, silencing mark H3-K27-Me1/3 and active marks H4-K16-Ac and H4-Ac5 decreased significantly. Significant increases were also seen for silencing mark H3-K9-Me3, active marks H3-K4-Me2, H3-K9/K14-Ac and H4-K5-Ac and a mark (H3-K79-Me2) associated with both active and silent chromatin. Other increases (H3-S10-P, H3-S28-P and silencing mark H3-K9-Me2) did not reach statistical significance. BAF overexpression also significantly influenced cell cycle distribution. Moreover, BAF associated in vivo with SET/I2PP2A (protein phosphatase 2A inhibitor; blocks H3 dephosphorylation) and G9a (H3-K9 methyltransferase), but showed no detectable association with HDAC1 or HATs. These findings reveal BAF as a novel epigenetic regulator and are discussed in relation to BAF deficiency phenotypes, which include a hereditary progeria syndrome and loss of pluripotency in embryonic stem cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据