3.8 Article

Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors

期刊

NANOSCALE RESEARCH LETTERS
卷 9, 期 -, 页码 -

出版社

SPRINGEROPEN
DOI: 10.1186/1556-276X-9-638

关键词

TeO2 nanorods; CuO shells; Gas sensors; Response; NO2

资金

  1. Core Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology

向作者/读者索取更多资源

TeO2-nanostructured sensors are seldom reported compared to other metal oxide semiconductor materials such as ZnO, In2O3, TiO2, Ga2O3, etc. TeO2/CuO core-shell nanorods were fabricated by thermal evaporation of Te powder followed by sputter deposition of CuO. Scanning electron microscopy and X-ray diffraction showed that each nanorod consisted of a single crystal TeO2 core and a polycrystalline CuO shell with a thickness of approximately 7 nm. The TeO2/CuO core-shell one-dimensional (1D) nanostructures exhibited a bamboo leaf-like morphology. The core-shell nanorods were 100 to 300 nm in diameter and up to 30 mu m in length. The multiple networked TeO2/CuO core-shell nanorod sensor showed responses of 142% to 425% to 0.5- to 10-ppm NO2 at 150 degrees C. These responses were stronger than or comparable to those of many other metal oxide nanostructures, suggesting that TeO2 is also a promising sensor material. The responses of the core-shell nanorods were 1.2 to 2.1 times higher than those of pristine TeO2 nanorods over the same NO2 concentration range. The underlying mechanism for the enhanced NO2 sensing properties of the core-shell nanorod sensor can be explained by the potential barrier-controlled carrier transport mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据