3.8 Article

Mildly reduced graphene oxide-Ag nanoparticle hybrid films for surface-enhanced Raman scattering

期刊

NANOSCALE RESEARCH LETTERS
卷 7, 期 -, 页码 -

出版社

SPRINGEROPEN
DOI: 10.1186/1556-276X-7-205

关键词

-

资金

  1. Temasek Laboratories@NTU (TL@NTU)

向作者/读者索取更多资源

Large-area mildly reduced graphene oxide (MR-GO) monolayer films were self-assembled on SiO2/Si surfaces via an amidation reaction strategy. With the MR-GO as templates, MR-GO-Ag nanoparticle (MR-GO-Ag NP) hybrid films were synthesized by immersing the MR-GO monolayer into a silver salt solution with sodium citrate as a reducing agent under UV illumination. SEM image indicated that Ag NPs with small interparticle gap are uniformly distributed on the MR-GO monolayer. Raman spectra demonstrated that the MR-GO monolayer beneath the Ag NPs can effectively quench the fluorescence signal emitted from the Ag films and dye molecules under laser excitation, resulting in a chemical enhancement (CM). The Ag NPs with narrow gap provided numerous hot spots, which are closely related with electromagnetic mechanism (EM), and were believed to remarkably enhance the Raman signal of the molecules. Due to the co-contribution of the CM and EM effects as well as the coordination mechanism between the MR-GO and Ag NPs, the MR-GO-Ag NP hybrid films showed more excellent Raman signal enhancement performance than that of either Ag films or MR-GO monolayer alone. This will further enrich the application of surface-enhanced Raman scattering in molecule detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据