3.8 Review

Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids

期刊

NANOSCALE RESEARCH LETTERS
卷 6, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1186/1556-276X-6-221

关键词

-

资金

  1. Ministerio de Educacion y Ciencia [CTQ2006-15537-C02/PPQ]
  2. Xunta de Galicia, Spain [PGIDIT07PXIB314181PR]
  3. Ministerio de Ciencia e Innovacion (Spain)

向作者/读者索取更多资源

The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据