4.8 Article

Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution

期刊

NANO ENERGY
卷 53, 期 -, 页码 690-697

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2018.09.046

关键词

Carbon nitride; 2D materials; Heterostructure; Hydrogen evolution; Dual active sites; DFT calculation

资金

  1. Australian Research Council [DP170104464, DP160104866, DE160101163, FL170100154]
  2. Australian Government

向作者/读者索取更多资源

Electrocatalysts are increasingly being used for the production of clean energy. In the past few decades, a wide range of two-dimensional (2D) materials have shown great potential in replacing noble metal catalysts for various electrocatalytic reactions. However, development of alkaline hydrogen evolution technology (a kinetically sluggish process for the conversion of electricity to hydrogen fuel in water electrolyzes) is greatly hindered due to the lack of active candidate materials and mechanistic understanding. In this work, we prepared a hybrid material of 2D graphitic carbon nitride and 2D molybdenum nitride (C3N4@MoN) using an interface engineering strategy. The resultant material had a well-designed heterostructure and unique electronic structure. The intimate interaction of both inert graphitic carbon nitride (g-C3N4) and MoN surfaces induced a highly active interface with tunable dual active sites for alkaline HER. Thus, the 2D C3N4@MoN hybrid exhibited highly efficient electrocatalytic performance which is better than most of the recently reported non-noble metal catalysts. The combination of experimental characterization with density functional theory calculations shows that the enhanced activity originates from the synergy between the optimized hydrogen adsorption energy on the g-C3N4 sites and enhanced hydroxyl adsorption energy on the MoN sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据