4.8 Article

Freestanding MoO3-x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors

期刊

NANO ENERGY
卷 9, 期 -, 页码 355-363

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2014.08.001

关键词

MoO3 nanobelts; Pseudocapacitor; Intercalation; Freestanding; Hydrogenated

资金

  1. National Natural Science Foundation of China [51322210, 51002056, 61434001]
  2. Foundation for the Author of National Excellent Doctoral Dissertation of PR China [201035]
  3. Fundamental Research Funds for the Central Universities [HUST: 2012YQ025, 2013YQ049, 2013TS160]
  4. WNLO [0118187081]
  5. U.S. Department of Energy, Office of Electricity, Energy Storage Systems Program, through Sandia National Laboratory

向作者/读者索取更多资源

Molybdenum trioxide (MoO3) is known as a promising pseudocapacitive material, but low conductivity limits its applications. Hydrogenation is demonstrated to increase the conductivity of MoO3 and hence improve its electrochemical performance. Hydrogenated MoO3 (MoO3-x) shows enhanced conductivity based on, both first principle calculations and single nanobelt measurements. Freestanding MoO3-x/carbon nanotubes (CNT) composite films have been fabricated and showed much improved electrochemical performance compared to composites of CNT and as-synthesized MoO3 (MoO3/CNT). Electrodes showed a specific capacitance of 337 F/g (based on the mass of MoO3-x) and a high volumetric capacitance of 291 F/cm(3) (based on the whole electrode) with excellent rate capability. Also we confirmed that the improved intercalation kinetics and the increased intercalation pseudocapacitance could be attributed to the higher electronic conductivity of MoO3-x, which results in better and faster intercalations of Li+ ions. This electrochemical behavior implies that MoO3-x can serve as a very good negative electrode with high capacitance at high mass loading levels. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据