4.8 Review

Hybrid nanostructured materials for high-performance electrochemical capacitors

期刊

NANO ENERGY
卷 2, 期 2, 页码 213-234

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2012.10.006

关键词

Electrochemical capacitors; Hybrid nanomaterials; Nanostructures; Energy storage; Pseudocapacitive; Supercapacitors

资金

  1. Precourt Institute for Energy at Stanford University
  2. King Abdullah University of Science and Technology (KAUST) Investigator Award [KUS-l1-001-12]
  3. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering through the SLAC National Accelerator Laboratory [DE-AC02-76SF00515]
  4. National Science foundation of China [61076017]

向作者/读者索取更多资源

The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据