4.6 Article

Analysis of Electric Fields inside Microchannels and Single Cell Electrical Lysis with a Microfluidic Device

期刊

MICROMACHINES
卷 4, 期 2, 页码 243-256

出版社

MDPI
DOI: 10.3390/mi4020243

关键词

biomedical electronics; electric fields; electrical lysis; finite element analysis; microchannel; microfluidics

向作者/读者索取更多资源

Analysis of electric fields generated inside the microchannels of a microfluidic device for electrical lysis of biological cells along with experimental verification are presented. Electrical lysis is the complete disintegration of cell membranes, due to a critical level of electric fields applied for a critical duration on a biological cell. Generating an electric field inside a microchannel of a microfluidic device has many advantages, including the efficient utilization of energy and low-current requirement. An ideal microchannel model was compared with a practical microchannel model using a finite element analysis tool that suggests that the overestimation error can be over 10%, from 2.5 mm or smaller, in the length of a microchannel. Two analytical forms are proposed to reduce this overestimation error. Experimental results showed that the high electric field is confined only inside the microchannel that is in agreement with the simulation results. Single cell electrical lysis was conducted with a fabricated microfluidic device. An average of 800 V for seven seconds across an 8 mm-long microchannel with the dimension of 100 mu m x 20 mu m was required for lysis, with electric fields exceeding 100 kV/m and consuming 300 mW.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据