4.6 Article

Designing lead-free bismuth ferrite-based ceramics learning from relaxor ferroelectric behavior for simultaneous high energy density and efficiency under low electric field

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 6, 期 38, 页码 10211-10217

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8tc03855d

关键词

-

资金

  1. Equipment Advanced Research Fund [61409220107]
  2. National Natural Science Foundation of China [11574334, 11604354]
  3. National Key Basic Research Program of China (973 Program) [2015CB057502]
  4. Youth Innovation Promotion Association, Chinese Academy of Sciences [2016231]

向作者/读者索取更多资源

Bismuth ferrite (BiFeO3, BFO) possesses very large spontaneous polarization, which provides a great potential in dielectric energy-storage capacitors. However, the presence of large remanent polarization heavily restricts the achievement of excellent performance in the energy storage field. Herein we designed local compositional disorder and constructed quenched random fields to maximize the discrepancy between the maximum polarization and the remanent polarization by means of introducing Zn2+ and Ta5+ at B-sites together in BiFeO3-based solution. Interestingly, pinched-hysteresis loops were observed in this Ba(Zn1/2Ta2/3)O-3-modified BFO-based solution. Ultrahigh recoverable energy density (2.56 J cm(-3)) was first reported under low electric field (16 kV mm(-1)), which is much superior to the previous results regarding BFO-based bulk ceramics. In addition, an excellent recoverable energy density (>2 J cm(-3)) and a high efficiency (>80%) were obtained simultaneously in this BZT-modified BFO-based bulk material under low electric field (<20 kV mm(-1)). These results demonstrate that the strategy of constructing weakly coupled polar structures is feasible and effective to boost the energy density and efficiency for BiFeO3-based bulk ceramics, which may pave a significant step towards utilizing energy-storage applications for BiFeO3-based materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据