4.6 Article

Defect-controlled electrocaloric effect in PbZrO3 thin films

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 6, 期 38, 页码 10332-10340

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8tc03965h

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [51772238]
  2. Chinese Scholarship Council [201706280322]
  3. National University of Singapore

向作者/读者索取更多资源

The present work demonstrates ferroelectric to antiferroelectric transition aided electric field control of positive and negative electrocaloric effects (ECE). In this context, epitaxial PbZrO3 (PZO) thin films were grown on (111) Nb:SrTiO3 single crystal substrates by the sol-gel method, and the epitaxial growth was confirmed by atomic resolution scanning transmission electron microscopy (STEM) high angle annular dark field (HAADF) images. The structural and elemental analysis revealed a gradual increase of natural lead volatilization from the middle to the top in PZO thin films. The electrocaloric effect (ECE) was calculated using Maxwell equations corresponding to 10 kHz and 100 Hz P-E data and was found to be -10.5 K (negative ECE) at 375 K and 30 K (positive ECE) at 300 K. Intriguingly, both negative and positive ECE were found in the same phase transition sequence, that is, from an antiferroelectric phase to a ferroelectric phase. The frequency dependence of ECE is found to be dependent on the polarization switching dynamics and kinetics. These results are not only scientifically important for providing an easy way to combine the negative and positive ECE together to further enhance the cooling efficiency but are also technically important for future ECE devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据