4.6 Article

Polyelectrolytes exceeding ITO flexibility in electrochromic devices

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 2, 期 46, 页码 9874-9881

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4tc01855a

关键词

-

资金

  1. Alphachromics, Inc.
  2. University of Connecticut

向作者/读者索取更多资源

Utilizing the in situ method, we report the fabrication of flexible electrochromic (EC) devices in a one-step lamination procedure. In this study, electrochromic device performance was enhanced via the use of new gel polymer electrolyte (GPE) materials based on poly(ethylene glycol) (PEG) derivatives. PEG serves as the polymer matrix in electrochromic devices (ECDs) that provides not only mechanical stability, but also a wide potential window and compatibility with a variety of salts. Poly(ethylene glycol) dimethacrylate (PEGDMA) in conjunction with poly(ethylene glycol) methyl ether acrylate (PEGMA), containing lithium trifluoromethanesulfonate (LiTRIF) as the salt and propylene carbonate (PC) as a plasticizer; we investigated various electrolyte parameters, including salt loading, the mono/di-functional PEG ratio, and the plasticizer to PEG ratio. Optimized gel systems exceed the mechanical flexibility of indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates in their sustainable minimum bending radius of curvature, exhibit an ionic conductivity up to 1.36 x 10(-3) S cm(-1), and yield electrochromic devices (ECDs) with photopic contrasts as high as 53% (without background correction) using poly(2,2-dimethyl-3,4-propylenedioxythiophene) (PProDOT-Me-2) as the standard electrochromic material. In addition to ionic conductivity, the crosslink density of the GPEs was found to have an important effect on the photopic contrast of the resultant ECDs. Using these results, 110 cm(2) flexible patterned EC displays were assembled as a demonstration of their potential in real world applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据