4.6 Article

Engineering polydopamine films with tailored behaviour for next-generation eumelanin-related hybrid devices

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 1, 期 5, 页码 1018-1028

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2tc00480a

关键词

-

资金

  1. Italian MIUR support through the PRIN projects
  2. MIUR (PRIN PRAM8L project)
  3. Universita degli Studi di Bari Aldo Moro

向作者/读者索取更多资源

Eumelanin-type biopolymers have attracted growing interest in the quest for soft bioinspired functional materials for application in organoelectronics. Recently, a metal-insulator-semiconductor device with a good quality interface was produced by spin coating of a commercial synthetic eumelanin-like material on a dry plasma-modified silicon surface. As a proof-of-concept step toward the design and implementation of next-generation eumelanin-inspired devices, we report herein an expedient chemical strategy to bestow n-type performance to polydopamine, a highly popular eumelanin-related biopolymer with intrinsic semiconductor behaviour, and to tune its electrical properties. The strategy relies on aerial co-oxidation of dopamine with suitable aromatic amines, e.g. 3-aminotyrosine or p-phenylenediamine, leading to good quality black polymeric films. Capacitance-voltage experiments on poly(dopamine/3-aminotyrosine) and poly(dopamine/p-phenylenediamine)-based metal insulator semiconductor devices on p-Si indicated a significant increase in flat band voltage with respect to polydopamine and previous synthetic eumelanin-based diodes. Variations of the flat band voltage under vacuum were observed for each device. These results point to polydopamine as a versatile eumelanin-type water-dependent semiconductor platform amenable to fine tuning of its electronic properties through incorporation of p-conjugating aromatic amines to tailor functionality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据