4.6 Article

Crystallization, phase evolution and ferroelectric properties of sol-gel-synthesized Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 thin films

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 1, 期 3, 页码 522-530

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2tc00020b

关键词

-

资金

  1. National Basic Research Program of China [2012CB619401]
  2. Key Program of the National Natural Science Foundation of China [11134004]
  3. Natural Science Foundation of China [51002029]
  4. Doctoral Fund of Ministry of Education of China [20100092120039]
  5. Opening project for the State Key Laboratory of Crystal Materials, Shandong University, P. R. China [KF1107]

向作者/读者索取更多资源

A lead-free piezoelectric material with ultra-high properties, Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3(BZT-xBCT) nanocrystals was synthesized via a sol-gel method, and the corresponding thin films were also deposited on Pt/Ti/SiO2/Si substrates by a spin-coating approach. The BZT-xBCT thin film exhibited a high remnant polarization of 22.15 mu C cm(-2) with a large coercive field of 68.06 kV cm(-1). The resultant gel is calcined at various elevated temperatures and studied with FTIR/XRD/Raman/DSC-TGA/AFM/SEM techniques for gel composition, crystallization, phase transition, thermochemistry and the morphology of the film. Although the room temperature crystal structure of the BZT-xBCT nanocrystals appears to be a standard perovskite structure by conventional X-ray diffraction (XRD), Raman spectroscopy demonstrates the presence of non-centrosymmetric regions arising from the off-centering of the titanium (zirconium) atoms. The Raman spectra findings demonstrate the degree by which the tetragonal phase grows with the increase of calcining temperature in BZT-0.5BCT, and the characteristic ferroelectric-ferroelectric phase transition in BZT-xBCT while going through the MPB process. The structural and constituent evolution for the conversion process from gel to ceramic, as well as the formation mechanism of the BZT-0.5BCT crystallite, were also elucidated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据