4.6 Article

Pulsed-current versus constant-voltage light-emitting electrochemical cells with trifluoromethyl-substituted cationic iridium(III) complexes

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 1, 期 11, 页码 2241-2248

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3tc00808h

关键词

-

资金

  1. European Union (CELLO) [STRP 248043]
  2. Spanish Ministry of Economy and Competitiveness (MINECO) [MAT2011-24594, CSD2007-00010, CTQ2009-08790]
  3. Generalitat Valenciana [Prometeo/2012/053]
  4. MECD (Spanish Ministry of Education, Culture, and Sport)
  5. MINECO

向作者/读者索取更多资源

We report on five cationic iridium(III) complexes with cyclometalating 2-(3'-trifluoromethylphenyl)pyridine and a diimine, [(C boolean AND N)(2)Ir(N boolean AND N)](PF6), N boolean AND N = 4,4'-R-2-2,2'-dipyridyl or 4,7-R-2-1,10-phenanthroline (R = H, Me, tert-Bu, Ph), and characterize three of them by crystal structure analysis. The complexes undergo oxidation of the Ir-aryl fragment at 1.13-1.16 V (against ferrocene couple) and reduction of the N boolean AND N ligand at -1.66 V to -1.86 V, and have a redox gap of 2.84-2.99 V. The complexes exhibit bluish-green to green-yellow phosphorescence in an argon-saturated dichloromethane solution at room temperature with a maximum at 486-520 nm, quantum yield of 61-67%, and an excited-state lifetime of 1.2-4.3 mu s. In two-layer spin-coated light-emitting electrochemical cells (LEC) operated at a constant-voltage (4 V) or a pulsed-current (100 A m(-2) per pulse; block wave, 1000 Hz; 50% duty), the complexes exhibit green-yellow electroluminescence with a maximum at 547-556 nm. The luminance and efficiency of LEC do not level off after peaking but decay; for example, the luminance of the devices after reaching the peak of 195-1094 cd m(-2) halves in 9-580 min. The best of the new LEC runs under pulsed-current driving and exhibits peak efficiencies of 16.8 cd A (1) and 7.9 lm W (1) and an EQE of 5.4% at a luminance of >= 834 cd m(-2). We find that the pulsed-current LEC offer the following advantages over the constant-voltage LEC: lower current, higher stability, faster turn-on, and higher efficiency at higher luminance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据