4.6 Article

Solution processed naphthalene diimide derivative as electron transport layers for enhanced brightness and efficient polymer light emitting diodes

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 1, 期 20, 页码 3347-3352

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3tc30175c

关键词

-

资金

  1. RCUK research funding
  2. E-On AG
  3. Santander's University Global Partnership Network

向作者/读者索取更多资源

Increasing the efficiency and lifetime of polymer light emitting diodes (PLEDs) requires a balanced injection and flow of charges through the device, driving demand for cheap and effective electron transport/hole blocking layers. Some materials, such as conjugated polyelectrolytes, have been identified as potential candidates but the production of these materials requires complex, and hence costly, synthesis routes. We have utilized a soluble small molecule naphthalene diimide derivative (DC18) as a novel electron transport/hole blocking layer in common PLED architectures, and compared its electronic properties to those of the electron transport/hole blocking small molecule bathocuproine (BCP). PLEDs incorporating DC18 as the electron transport layer reduce turn on voltage by 25%; increase brightness over three and a half times; and provide a full five-fold enhancement in efficiencies compared to reference devices. While DC18 has similar properties to the effective conjugated polyelectrolytes used as electron transport layers, it is simpler to synthesise, reducing cost while retaining favourable electron transport properties, and producing a greater degree of efficiency enhancement. The impact on device lifetime is hypothesized to be significant as well, due to the air-stability seen in many naphthalene diimide derivatives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据