4.6 Article

Real-time imaging of intracellular drug release from mesoporous silica nanoparticles based on fluorescence resonance energy transfer

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 2, 期 27, 页码 4379-4386

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4tb00221k

关键词

-

资金

  1. National Natural Science Foundation of China [21035005]
  2. Chongqing Science and Technology Commission

向作者/读者索取更多资源

In this study, a targeted cancer therapy imaging and sensing system is designed based on doxorubicin (DOX)-loaded green fluorescent mesoporous silica nanoparticles (FMSN) conjugated with folic acid (FA), by linking with alpha-amine-omega-propionic acid hexaethylene glycol (NH2-PEG-COOH). An in situ formation method is adopted to prepare luminescent MSNs, which then act as the donor for the fluorescence resonance energy transfer (FRET), as their emission at 500 nm overlaps with the absorption of the acceptor DOX at 485 nm. NH2-PEG-COOH is conjugated to the outer surface of the FMSN at one end and modified by folic acid at the other, so that the formed mesoporous silica composite has the merits of fluorescence imaging, mesoporous nanostructure for drug loading, receptor-mediated targeting and real-time monitoring of intracellular drug release. It was found that the FA-grafted and PEGlated nanocomposite has excellent biocompatibility towards Hep2 cells, and that the cytotoxicity of the loaded-DOX nanoparticles, containing the folate targeting units in the folate-receptor-rich Hep2 cancer cells, is higher than that without folate targeting units, under the same conditions. When the resultant nanoparticles enter into the cells, the green fluorescence of FMSN gradually recovers along with the release of DOX, to achieve the purpose of real-time monitoring of intracellular drug release.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据