4.6 Article

Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 2, 期 37, 页码 6354-6362

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4tb00976b

关键词

-

资金

  1. National Institute of Health [1DP2OD007394-01]
  2. OFFICE OF THE DIRECTOR, NATIONAL INSTITUTES OF HEALTH [DP2OD007394] Funding Source: NIH RePORTER

向作者/读者索取更多资源

The widespread use of graphene for various industrial and biomedical applications requires efficient remediation strategies during its disposal into waste streams. In addition, the interactions of graphene with the biota need thorough evaluation. In this study, we investigated the interactions of oxidized and reduced graphene oxide nanoribbons (GONRs and rGONRs) with lignin peroxidase (LiP), a ligninolytic enzyme released from white rot fungus. GONRs and rGONRs were treated with LiP in the presence and absence of veratryl alcohol (VA; an electron transfer mediator and secondary metabolite of white rot fungi). Transmission electron microscopy showed the formation of large defects (holes) in the graphene sheet, which increased in diameter with increased degradation time. Raman spectroscopic analysis indicated that, within 96 hours, in the presence of hydrogen peroxide and VA, the GONRs and rGONRs were completely and partially degraded by LiP, respectively. Comparisons between groups with or without VA showed that degradation of GONRs was accelerated in the presence of VA. These results indicated that LiP could efficiently degrade GONRs and rGONRs in the presence of VA, suggesting that VA may be an essential factor needed to degrade rGONRs via LiP treatment. Thus, the wide presence of white rot fungi, and thereby LiP, in nature, could lead to efficient degradation of graphene present in the environment. Additionally, LiP, which has a higher theoretical redox potential compared to horseradish peroxidases and myeloperoxidases, could be a better candidate for the environmental remediation of graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据