4.6 Article

Charge-reversal plug gate nanovalves on peptide-functionalized mesoporous silica nanoparticles for targeted drug delivery

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 1, 期 41, 页码 5723-5732

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3tb20792g

关键词

-

资金

  1. National Key Basic Research Program of China [2011CB606202]
  2. National Natural Science Foundation of China [51125014, 51233003]
  3. Fundamental Research Funds for the Central Universities [2012203020210]

向作者/读者索取更多资源

To develop a smart nanovalve on mesoporous silica nanoparticles (MSNs) for biomedical applications, a new type of peptide-functionalized MSN with a plug-gate nanovalve (PGN) was designed for targeted drug release in cancer cells. The outer shell of MSN was functionalized with K-8 peptide (octa-lysine sequence) by click chemistry, followed by reacting with citraconic anhydride via a, b-unsaturated bond to prepare negatively charged MSN-K-8(Cit). Subsequently, a cationic K-8(RGD)(2) peptide containing two Arg-Gly-Asp (RGD) sequences for targeting was introduced via electrostatic interaction to the negatively charged surface of MSN-K-8(Cit) to form PGN. It was found that, at pH 5.0 (simulating the endo/lysosomal environment), the surface charge of MSN-K-8(Cit) could convert from -41 mV to + 19 mV due to the hydrolysis of the acid-labile amides in the acidic condition, implying the subsequent electrostatic repulsion to induce opening of the nanovalves and release of anticancer drug, DOX. According to the drug release studies, 79% of DOX was released within 48 h at pH 5.0, while much less DOX was released at pH 6.5 and 7.4. Furthermore, in vitro cellular experiments confirmed that the drug delivery system had enhanced cellular association and cell inhibition effect on alpha(v)beta(3)-positive U87 MG cancerous cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据