4.6 Article

Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 1, 期 30, 页码 3685-3693

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3tb20324g

关键词

-

资金

  1. Japan Society for the Promotion of Science (JSPS) [124225006]
  2. Grants-in-Aid for Scientific Research [23240070] Funding Source: KAKEN

向作者/读者索取更多资源

Polyzwitterionic materials, which have both cationic and anionic groups in the polymeric repeat unit, show excellent anti-biofouling properties and are drawing more attention in the biomedical field. In this study, we have successfully synthesized novel single network hydrogels and double network (DN) hydrogels from the zwitterionic monomer, N-(carboxymethyl)-N,N-dimethyl-2-(methacryloyloxy) ethanaminium, inner salt (CDME). The polyCDME (PCDME) single network hydrogel behaves like a hydrophilic neutral hydrogel and its properties are not sensitive to temperature, pH, or ionic strength over a wide range. DN hydrogels using the poly(2-acrylamido-2-methylpropanesulfonic) (PAMPS) as the first network and PCDME as the second network, having a Young's modulus of 0.2-0.9 MPa, possess excellent mechanical strength (fracture stress: 1.2-1.4 MPa, fracture strain: 2.2-6.0 mm/mm) and toughness (work of extension at fracture: 0.9-2.4 MJ m(-3)) depending on the composition ratio of PCDME to PAMPS. The strength and toughness of the optimized PAMPS/PCDME DN is comparable to the normal PAMPS/PAAm DN hydrogels that use poly(acrylamide) (PAAm) as the second network. By macrophage adhesion test, both the PCDME hydrogels and the PAMPS/PCDME DN hydrogels have shown excellent anti-biofouling properties. These results demonstrate that the PCDME-based DN hydrogels have high potential as a novel soft and wet biomaterial.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据