4.6 Article

Controlled synthesis of pH responsive cationic polymers containing side-chain peptide moieties via RAFT polymerization and their self-assembly

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 1, 期 7, 页码 946-957

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2tb00170e

关键词

-

资金

  1. Department of Science and Technology (DST), New Delhi, India [SR/S1/OC-51/2010]
  2. Indian Institute of Science Education and Research - Kolkata

向作者/读者索取更多资源

A general and facile strategy was developed to prepare biocompatible peptide side-chain polymeric materials via reversible addition-fragmentation chain transfer (RAFT) polymerization. Three new dipeptide based monomers, Boc-Phe-Phe-oxyethyl methacrylate (Boc-FF-EMA), Boc-Ile-Phe-oxyethyl methacrylate (Boc-IF-EMA) and Boc-Val-Phe-oxyethyl methacrylate (Boc-VF-EMA), were synthesized and subsequently polymerized by RAFT process to afford well-defined peptide side-chain polymers, P(Boc-dipep-EMA), with controlled molecular weight, narrow polydispersity and precise chain end functionality. Further, a monomethoxy poly(ethylene glycol) (mPEG) based macro-chain transfer agent was employed for RAFT polymerization of these monomers to prepare well defined amphiphilic block copolymers, mPEG-b-P(Boc-dipep-EMA). Subsequent deprotection of side-chain Boc groups produced pH responsive homo-and block copolymers with primary amine moieties at the side chains. The cationic surface charge of various polymeric architectures was studied using dynamic light scattering (DLS) measurements. Atomic force microscopy (AFM) was employed to investigate the self-assembly of block copolymers. The in vitro biocompatibility to HeLa cells was investigated with these polymers to confirm their minimum cytotoxicity. These polymers have great potential for the pH-sensitive delivery of small interfering RNA (siRNA) owing to their interesting phase transition behaviour and biocompatibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据