4.6 Article

Thermal stability of Sn anode material with non-aqueous electrolytes in sodium-ion batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 41, 页码 20383-20392

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta07854h

关键词

-

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science and ICT [2018R1A2B2007081]

向作者/读者索取更多资源

The thermal behavior of fully lithiated and sodiated Sn electrodes cycled in a MePF6 (Me = Li or Na)-based electrolyte was studied using differential scanning calorimetry (DSC). The sodiated Sn electrode cycled in the NaPF6-based electrolyte showed a thermal reaction with much greater heat generation (1719.4 J g(-1)) during the first exothermic reaction corresponding to the thermal decomposition reaction of the solid electrolyte interface (SEI) layer, compared to that of the lithiated Sn electrode (647.7 J g(-1)) in the LiPF6-based electrolyte because of the formation of a thicker surface film on the Sn electrode. The NaPF6-based electrolyte yielded a slightly less conductive and/or a thicker SEI layer than the NaClO4-based electrolyte, resulting in the intense thermal decomposition of the SEI layer. The DSC results for the fully sodiated Sn electrode cycled in FEC-containing electrolytes clearly demonstrate that an exothermic reaction corresponding to the SEI decomposition mostly disappears because of the formation of a thermally stable and thin SEI layer on active materials via the electrochemical decomposition of FEC. X-ray photoelectron spectroscopy reveals the formation of SEI with a relatively high proportion of NaF, which is known to be a thermally stable inorganic solid at high temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据