4.6 Article

Atomic layer deposited zinc oxysulfide anodes in Li-ion batteries: an efficient solution for electrochemical instability and low conductivity

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 34, 页码 16515-16528

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta04129f

关键词

-

资金

  1. National Research Foundation of Korea (NRF) grant - Korean government [NRF-2018R1A2B6002268, NRF-2018R1A6A1A03024334]
  2. Human Resources Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) from the Ministry of Trade, Industry & Energy, Republic of Korea [20164030201310]

向作者/读者索取更多资源

In addition to their optoelectronic applications, Zn-based oxides and sulfides have also been widely studied as electrode materials in Li-ion batteries owing to their high theoretical capacity. However, both the materials suffer from a drastic loss in capacity due to their poor conductivity and electrochemical instability. A very efficient and carefully controlled combination of these two may address these limitations. In this work, thin films of zinc oxysulfide (ZnOS) with an O/(O + S) ratio of approximate to 0.7 were deposited using a combination of oxide and sulfide atomic layer deposition (ALD) cycles; they were then tested as anodes in Li-ion batteries. The material was grown directly on a stainless steel substrate (SS), characterized extensively using several ex situ characterization tools, and then used as an anode with no binder or conductive additives. Cyclic voltammetry measurements were used to confirm the reversible conversion of ZnOS in addition to the well-known alloying-dealloying Li-Zn reaction. The material loading was further optimized by varying the number of ALD supercycles to attain the maximum stable cycling performance. The highest stable capacities of 632.9 and 510.3 mA h g(-1) were achieved at current densities of 0.1 and 1 A g(-1) (approximate to 4 and 40 A cm(-2)), respectively, for a ZnOS film with an optimum thickness of approximate to 75 nm. The optimized ZnOS anode exhibited superior electrochemical performance in comparison to the equivalent pristine ZnO and ZnS anodes. Finally, the post-cycling analysis of the binder-free ALD grown ZnOS anodes demonstrated excellent adhesion to the SS substrate and the high stability of these films upon cycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据