4.6 Article

An ultrafast rechargeable lithium metal battery

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 32, 页码 15517-15522

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta05354e

关键词

-

资金

  1. CSC (China Scholarship Council) scholarship
  2. National Basic Research Program of China [2014CB932300]
  3. NSF of Jiangsu Province [BK20170630]
  4. NSF of China [21373111, 21633003, 51602144]
  5. Fundamental Research Funds for the Central Universities [14380096, 0204119002]

向作者/读者索取更多资源

Rechargeable lithium metal batteries have been regarded as one of the most attractive high-energy-density batteries due to their large specific capacity and the lowest reduction potential of metallic lithium. However, the uncontrollable Li dendrite growth and the resulting unstable interfaces during repeated Li plating/stripping lead to severe safety issues and a short cycle life, which are aggravated especially at a high current density. Herein, we present an organic/inorganic composite protective layer via pretreating the lithium metal in an Mn(NO3)(2)-containing carbonate electrolyte, not only enabling stable lithium deposition and formation with a prolonged cycle life, but also providing a record high rate of 20 mA cm(-2) with a minimized overpotential of 60 mV in a symmetric lithium cell. Results indicate that such an artificial protective film could effectively prolong the cycle life of Li|Cu cells, and greatly improve the comprehensive electrochemical performance of Li|LiMn2O4 cells. The pretreated-Li|LiMn2O4 cells show an outstanding cycling performance with 83% capacity retention over 200 cycles at a high rate of 2C and a high temperature of 55 degrees C, and exhibit robust recovery capabilities with a high capacity and coulombic efficiency after the cycles at 10C. These findings highlight the significance of a protective layer in stabilizing a Li metal anode and pave a new way for designing high-energy batteries for practical utilization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据