4.6 Article

Surface energy-driven ex situ hierarchical assembly of low-dimensional nanomaterials on graphene aerogels: a versatile strategy

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 38, 页码 18551-18560

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta07338d

关键词

-

资金

  1. ETH Zurich
  2. Office of China Postdoctoral Council [32 Document of OCPC]
  3. U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR)
  4. DOE [DE-AC05-76RL01830]

向作者/读者索取更多资源

Hybrid aerogels composed of functional low-dimensional nanomaterials (LDNs) and reduced graphene oxide (rGO) hold great promise in fields ranging from catalysis to energy storage and conversion. However, the challenge of developing a general strategy for the hierarchical assembly of LDNs on rGO aerogels remains unsolved. Here, we propose a surface energy-driven strategy for ex situ hierarchical assembly of LDNs on preformed rGO aerogels. This strategy is versatile and generally applicable to a broad variety of LDNs regardless of their composition, shapes, and dimensionalities. Experimental and simulation results reveal that the organically modified, energetically stable LDNs thermodynamically tend to uniformly and densely reside on the rGO aerogels, thereby reducing the surface energy of the aerogels and the free energy of the solution system. Four kinds of LDNs are successfully decorated on rGO aerogels, including 0D Mn3O4 nanocubes and Ag nanospheres, and 1D TiO2 nanochains and SnO2 nanowires. As a possible application harnessing the unique structural features of these materials, the Mn3O4@rGO hybrid aerogels were tested as anodes in lithium ion battery half cells, delivering a high reversible lithium storage capacity (1.35 mA h cm(-2) at 3.5 mA cm(-2)) at high mass loading density (up to 7 mg cm(-2)).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据