4.6 Article

Graphene oxide nanosheet: an emerging star material for novel separation membranes

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 2, 期 34, 页码 13772-13782

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta02359e

关键词

-

资金

  1. National Nature Science Foundations of China [NSFC 21271154]
  2. Doctoral Fund of Ministry of Education of China [20110101110028]
  3. Natural Science Foundation for Outstanding Young Scientist of Zhejiang Province [LR14E020001]

向作者/读者索取更多资源

Advanced membranes that enable ultrafast permeance are very important for processes such as water purification and desalination. Ideally, an efficient ultrafast membrane should be as thin as possible to maximize the permeance, be robust enough to withstand the applied pressure and have a narrow distribution of pore size for excellent selectivity. Graphene oxide nanosheets offer an encouraging opportunity to assemble a brand new class of ultrathin, high-flux and energy-efficient sieving membranes because of their unique two-dimensional and mono-atom thick structure, outstanding mechanical strength and good flexibility as well as their facile and large-scale production in solution. The current state-of-the-art in graphene oxide membranes will be reviewed based on their exceptional separation performance (gas, ions and small molecules). We will focus on the structure of nanochannels within the graphene oxide membranes, the permeance and rejection rate, and the interactions between graphene oxide sheets. The separation performance of graphene oxide membranes can be easily influenced by the state of oxygen-containing groups on the graphene oxide sheets, which provides much more straightforward strategies to tune the pore size of graphene oxide nanochannels when compared to other filtration membranes. We will illustrate in the review theoretical calculations to elucidate the potential of precisely controlling the ionic and small molecular sieving and water transport behaviour through graphene oxide nanochannels. This review will serve as a valuable platform to fully understand how the ions, small molecules and water are transported through the laminar graphene oxide membrane as well as the latest progress in graphene oxide separation membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据