4.6 Article

Mesoporous TiO2 beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 2, 期 8, 页码 2517-2525

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta13460a

关键词

-

资金

  1. National Science Foundation [DMR 1035196]
  2. University of Washington TGIF grant
  3. Royalty Research Fund (RRF) from the Office of Research at the University of Washington
  4. China Scholarship Council

向作者/读者索取更多资源

Mesoporous TiO2 beads with a combined effective light scattering effect and large surface area were prepared and studied for quantum dot-sensitized solar cell (QDSC) application. The photoanode films were composed of submicrometer-sized beads consisting of packed TiO2 nanocrystallites. A power conversion efficiency up to 4.05% has been achieved for a CdS/CdSe quantum dot (QD) co-sensitized solar cell, which was constructed with the mesoporous TiO2 beads prepared with a two-step method, in which an optimal amount of ammonia was adopted to etch TiO2 spheres and achieve the desired porosity of the beads for QD adsorption. The high conversion efficiency was ascribed to a combined effect of the mesoporous structure, light scattering ability and good electrical conduction capability of the beads. It has been found that larger pores can be created by adding more ammonia during the solvothermal treatment, leading to easy penetration of the QDs into the inner pores of the mesoporous beads. An excessive amount of ammonia would lead to a low specific surface area and decrease of light scattering capability of the films. Electrochemical impedance spectroscopy analysis revealed a retarded charge recombination for the mesoporous TiO2 beads treated with ammonia in view of a decreased contact area of the beads with the electrolyte, reflected in the increase of both open circuit voltage and fill factor of the solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据