4.6 Article

Free-floating ultrathin tin monoxide sheets for solar-driven photoelectrochemical water splitting

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 2, 期 27, 页码 10647-10653

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta01659a

关键词

-

资金

  1. National Nature Science Foundation [21331005, 11079004, 90922016, 21201157, 11321503]
  2. Chinese Academy of Science [XDB01020300]
  3. Program for New Century Excellent Talents in University [NCET-13-0546]
  4. Fundamental Research Funds for the Central Universities [WK2310000022]

向作者/读者索取更多资源

Solar-driven photoelectrochemical water splitting represents one of the most challenging tasks for solar-energy utilization. In this study, free-floating ultrathin SnO sheets with different thicknesses were successfully synthesized via a convenient liquid exfoliation strategy, with efforts to disclose the thickness-dependent solar water splitting efficiency in p-type semiconductors. The thinner thickness and larger surface area afford a higher fraction of surface atoms to serve as active sites, while the calculated increased density of states near the Fermi level ensures rapid carrier transport/separation efficiency along the two-dimensional conducting paths of the thinner SnO sheets. As expected, the 3 nm thick SnO sheet-based photocathode shows an incident photon-to-current conversion efficiency of up to 20.1% at 300 nm, remarkably higher than 10.7% and 4.2% for the 5.4 nm thick SnO sheet-and bulk SnO-based electrodes. This work discusses the thickness-dependent solar water splitting efficiency in ultrathin p-type semiconductor sheets, thus opening new opportunities in the field of solar cells and photocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据