4.6 Article

High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 2, 期 39, 页码 16761-16769

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta03724c

关键词

-

向作者/读者索取更多资源

All-polymer paper-based electrodes with a thickness up to hundreds of micrometers (e.g. 290 mu m), large active mass loadings (>20 mg cm(-2)) and relatively high densities (1.23 g cm(-3)) can be straightforwardly obtained from pristine low-cost polypyrrole-cellulose composites by decreasing the porosity of the material via space engineering. By straightforward compression of the composites, compact capacitive storage devices with improved space utilization are obtained without significantly compromising the electrochemical performance of the devices. This indicates that the compression unlike other methods previously used to vary the porosity of these composites does not affect the distribution of the mesopores which mainly determines the electrochemical performance of the material. When used to manufacture green supercapacitors comprising entirely of environmentally friendly materials, the freestanding and binder-free porous yet dense electrodes yield an areal capacitance of 5.66 F cm(-2), a device volumetric energy density of 3.7 W h L-1 (based on the volume of the entire device) and the largest volumetric electrode capacitance of 236 F cm(-3) so far reported for conducting polymer-based electrodes. The presented results for symmetric supercapacitors containing aqueous electrolytes represent significant progress in the development of inexpensive and environmentally friendly high-performance paper-based energy storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据